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Information assurance and IV&V 

 NASA develops, runs, and maintains many 

systems for which one or more security attributes 

(i.e. confidentiality, integrity, availability, 

authentication, authorization, and non-repudiation) 

are of vital importance 

 

 Information assurance and  

 cyber security have to be  

 integrated in the traditional  

 verification and validation  

 process 
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Static code analysis 

 Static analysis of source code provides a scalable 

method for code review  

 Tools matured rapidly in the last decade 

• from simple lexical analysis to more complex and 

accurate techniques 

 In general, static analysis problems are 

undecidable (i.e. it is impossible to construct an 

algorithm which always leads to a correct answer) 

• False negatives 

• False positives 
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To examine the ability of static 

code analysis tools to detect 

security vulnerabilities 
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Approach 

 Surveyed the literature and vendor provided 

information on the state-of-the-art and practice of 

static code analysis tools 

• 15 commercial products 

• 8 tools licensed under some kind of open source license 

 Selected three tools for detailed evaluation 

• To fully use the provided functionality all three tools 

require a build to be created or at least the software under 

test to be compiled 

 Performance was evaluated using 

• Micro-benchmarking test suites for C/C++ and Java  

• Three open source programs with known vulnerabilities 
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EVALUATION 

BASED ON THE 

JULIET TEST 

SUITE 
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Juliet test suite 

 Micro-benchmarking suite which covers large 

number of CWEs 

• Each CWE (Common Weakness Enumeration) 

represents a single vulnerability type  

 Created by NSA and made publicly available at the 

NIST Web site  

 C/C++ suite (version 1.1) 

• 119 CWEs 

• 57,099 test cases 

 Java suite (version 1.1.1) 

• 113 CWEs 

• 23,957 test cases 
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Juliet test suite 

 This presentation is focused on the CWEs covered 

by all three tools 

• 22 common C/C++ CWEs among the three tools 

(~21,000 test cases) 

• 19 common Java CWEs among the three tools (~7,500 

test cases) 

 Two of the tools covered significantly more CWEs 

• 90 C/C++ CWEs (~34,000 test cases) 

• 107 Java CWEs (~16,000 test cases) 

• Results were similar to the ones presented here 
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Automatic assessment 

Run each tool on 

the Juliet test suite 

Transform tool’s 

output in a common 

format 

Parse the output & compute  

the confusion matrix 

Parse each CWE 

directory & assemble a 

list of test cases 
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Confusion matrix & metrics 
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No warning/error 
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vulnerability 

True Positives 
(TP) 

False Negatives 
(FN) 

No vulnerability  
(good function/method) 

False Positives 
(FP) 

True Negatives 
(TN) 

% of functions that are classified correctly 

 

 

Probability of detecting a vulnerability (recall)  

 

 

Probability of misclassifying a good function  

as a bad function (false alarm) 
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Accuracy: C/C++ CWEs 

 

The three 

tools have 

similar 

performance 

with Tool C 

performing 

slightly better 

Tool A:    Range [0.27,0.77], Average = 0.59, Median = 0.63 

Tool B:    Range [0.50, 0.87], Average = 0.67, Median = 0.64 

Tool C:    Range [0.41,1], Average = 0.72, Median = 0.64 
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Recall: C/C++ CWEs 

Each tool has 0% 

recall for some 

CWEs 

 

For some CWEs 

(i.e.,197, 391, 

478, 480, 482, 

835) all three 

tools have 0% 

recall 

 

Accuracy on its 

own is not a good 

metric for tools’  

performance 

  

Tool A: Range [0, 1],  Average = 0.21 , Median = 0.14 

Tool B: Range [0, 0.87], Average = 0.26,  Median = 0.10 

Tool C: Range [0,1], Average = 0.39, Median = 0.42 
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Probability of false alarm: C/C++ CWEs 

Tool C has 

noticeably 

lower false 

positive rate 

than Tools A 

and B 

  

Tool A:  Range [0, 0.94], Average = 0.18, Median = 0.02 

Tool B:  Range [0, 0.52], Average = 0.09, Median = 0.01 

Tool C:  Range [0,0.94], Average = 0.07, Median = 0 
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Balance: C/C++ CWEs 

Balance values 

for many CWEs 

were around 

30%, which 

indicates poor 

overall 

performance 

 

Tool C 

performed 

slightly better 

than the other 

two tools 

  

Tool A:  Range [0.28, 0.65], Average = 0.39, Median = 0.29 

Tool B:  Range [0.29, 0.87], Average = 0.46, Median = 0.36 

Tool C:  Range [0.29,1], Average = 0.53, Median = 0.46 
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ROC squares for C/C++ CWEs 

Ideal result  

(pf, pd) = (0, 1) 

Not many points are close to the ideal (0,1) point  

Tool C has noticeably lower false alarm rate 

For each tool there are multiple CWEs at the (0,0) point 
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Accuracy: Java CWEs 

Accuracy values for 

Java  CWEs vary 

somewhat more than 

those for C/C++ 

CWEs 

 

All three tools attain 

a maximum accuracy 

value for several 

CWEs 

 

Tool C seems to be 

performing slightly 

better than the other 

two tools 

  

Tool A:  Range [0.41,1], Average = 0.67, Median = 0.63 

Tool B:  Range [0,1],  Average = 0.60, Median = 0.63 

Tool C:  Range [0.52,1], Average = 0.73, Median = 0.67 
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Recall: Java CWEs 

Again, there were 

CWEs (i.e., 486 

and 489) for which 

none of the tools 

correctly flagged 

any flawed 

constructs 

 

However, not as 

many as in case of 

C/C++ test suite 

 

Tool A performed 

slightly better than 

the other two tools 

 

  

Tool A:  Range [0,1], Average = 0.49, Median = 0.50 

Tool B:  Range [0,1], Average = 0.35, Median = 0.18 

Tool C:  Range [0,1], Average = 0.36, Median = 0.17 
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Probability of false alarm: Java CWEs 

Similar trend as in 

case of the C/C++ 

false alarm values 

 

Tool C performed 

better than the other 

two tools; Tool A 

performed slightly 

better than Tool B. 

  

Tool A:  Range [0,0.94],  Average = 0.24, Median = 0 

Tool B:  Range [0,1],  Average = 0.25, Median = 0.03 

Tool C:  Range [0,0.47], Average = 0.05, Median = 0 
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Balance: Java CWEs 

Similar trend as in 

case of C/C++ 

balance values 

 

For many CWEs 

balance values 

were around 30%, 

which is an 

indicator of overall 

poor performance 

 

Tools A and C 

appear to perform 

slightly better than 

Tool B 

  

Tool A:  Range [0.29,1], Average = 0.50, Median = 0.34 

Tool B:  Range [0,1],  Average = 0.43, Median = 0.34 

Tool C:  Range [0.29,1], Average = 0.52, Median = 0.41 
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ROC squares for Java CWEs 

Ideal result  

(pf, pd) = (0, 1) 

Not many points are close to the ideal (0,1) point  

Tool C has noticeably lower false alarm rate 

For each tool there are multiple CWEs at the (0,0) point 
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CWE/SANS top 25 most dangerous 

software errors 

C/C++  
 CWE 78 OS Command Injection  

• Tool A had the highest recall (54%), but also very high 

probability of false alarm (89%) 

• Tools B and C performed poorly, with recall values 

around 4% and 0% respectively 

 CWE 134 Uncontrolled Format String 

• Tool C was the most successful (with recall close to 

79%), but with high probability of false alarm (i.e., 48%) 

• Tools A and B had lower recall values (i.e., around 30% 

and 38%, respectively)  
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CWE/SANS top 25 most dangerous 

software errors 

Java 
 CWE 190 Integer Overflow  

• Tool B had recall of around 27%, with relatively high false 

alarm rate of almost 22% 

• Neither Tool A nor Tool B detected CWE 190 (i.e. they 

had 0% recall)   
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EVALUATION 

BASED ON REAL 

PROGRAMS 
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Evaluation based on real software 

 Three open-source software applications 

• Gzip 

• Dovecot 

• Apache Tomcat 

 Older version with known vulnerabilities 

 More recent version with the same vulnerabilities 

being fixed was used as an oracle 

 A total of 44 known vulnerabilities in the three 

applications, mapped to 8 different CWEs 
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Gzip: Basic facts 

 Popular open source archiving tool 

 Written in C 

 ~8,500 LOC 

 Vulnerable version: 1.3.5 with 4 known 

vulnerabilities 

 Version with fixed vulnerabilities: 1.3.6 
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Gzip-1.3.5 version with known vulnerabilities 

Tool Warnings  Number of 

detected 

vulnerabilities 

Tool A 112 1 out of 4 

Tool B 36 0 out of 4 

Tool C 119 1 out of 4 

Gzip-1.3.6 version with fixed vulnerabilities 

Tool Warnings  Number of 

reported 

vulnerabilities 

Tool A 206 1 out of 4  

Tool B 125 0 out of 4 

Tool C 374 1 out of 4 

True positive 

False positive 

Gzip: Results 
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Dovecot: Basic facts 

 IMAP/POP3 server for Unix-like operating systems 

 Written in C 

 ~280,000 LOC 

 Vulnerable version: 1.2.0 with 8 known 

vulnerabilities 

 Version with fixed vulnerabilities: 1.2.17 
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Dovecot-1.2.0 version with known vulnerabilities 

Tool Warnings  Number of 

detected 

vulnerabilities 

Tool A 8,263 0 out of 8 

Tool B 538 0 out of 8 

Tool C 1,356 0 out of 8 

Dovecot-1.2.17 version with fixed vulnerabilities 

Tool Warnings  Number of 

reported 

vulnerabilities 

Tool A 8,655 0 out of 8  

Tool B 539 0 out of 8 

Tool C 1,293 0 out of 8 

Dovecot: Results 
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Tomcat: Basic facts 

 Open source Java Servlet and JavaServer Pages 

implementation 

 Written in Java 

 ~4,800,000 LOC 

 Vulnerable version: 5.5.13 with 32 known 

vulnerabilities 

 Version with fixed vulnerabilities: 5.5.33 
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Tomcat: Basic facts 

 Due to its much greater complexity, the majority of 

Tomcat’s vulnerabilities span several files and/or 

locations within each file 

• 4 out of 32 vulnerabilities occur at one location 

within one file 

• 9 out of 32 vulnerabilities occur at multiple 

locations within one file 

• 19 out of 32 vulnerabilities occur in multiple files 

 We consider a true positive found if at least one of 

the file(s)/location(s) are matched by a tool 
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Tomcat-5.5.13 version with known vulnerabilities 

Tool Warnings  Number of 

detected 

vulnerabilities 

Tool A 12,399 7 out of 32 

Tool B 12,904 3 out of 32 

Tool C 20,608 5 out of 32 

Tomcat-5.5.33 version with fixed vulnerabilities 

Tool Warnings  Number of 

reported 

vulnerabilities 

Tool A 167,837 2 out of 32  

Tool B 13,129 0 out of 32 

Tool C 21,128 1 out of 32 

True positives 

False positives 

Tomcat: Results 
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CONCLUDING REMARKS 
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Conclusions 

 None of the three tools produced very good results 

(i.e., high probability of detection (i.e., recall) and 

low probability of false alarm) 

 Tool C had the smallest false alarm rate among the 

three tools (mean value of 7% for the common 

C/C++ CWEs and 5% for the common Java CWEs) 

 Some CWEs were detected by all three tools, 

others by a combination of two tools or a single 

tool, while some CWEs were missed by all three 

tools 
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Conclusions 

 The results of the evaluation with real open source 

programs were consistent with the evaluation 

based on the Juliet test suite 

• All three tools had high false negative rates (i.e. were not 

able to identify majority of the known vulnerabilities) 

• Tool A outperformed the other two tools on the application 

implemented in Java 

 Static code analysis cannot be used as an 

assurance that the software is secure. Rather, it 

should be one of the techniques used, in addition 

to other complementary techniques 


